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1. Introduction

Our common quantum relativistic understanding of matter in terms of finite dimensional,

irreducible representations of the Poincaré algebra is a very rough approximation of reality.

This description is tied to the isometries of the flat, Minkowski solution to general relativity

and yields a good approximation only in very weak gravitational fields, like for instance, in

our particle accelerators where the successes of quantum field theory have been crowned.

In a fundamental theory of Nature, one cannot expect this approximation to be valid

since in the early, Planckian universe, spacetime is undoubtedly not flat. Accordingly, the
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search of the fundamental structure of matter is tied to non-trivial, and certainly quantum

configurations of the gravitational field. In turn, a complete theory of quantum gravity

will have to incorporate a precise description of the degrees of freedom of matter.

As a first step, it seems therefore natural to look for an understanding of matter

which does not rely on a particular fixed background geometry at the classical level. This

will automatically render the formulation compatible with non-perturbative attempts to

the quantisation of gravity which cannot, consistently, rely on a fixed, background metric

structure.

A very old and appealing idea consists in considering the Einstein equations as defining

the notion of matter. In other words, to consider matter as particular, possibly singular,

configurations of the gravitational field. In this framework, we are reversing the standard

picture where matter is defined on flat spacetime and then tentatively extended to other

solutions of general relativity. Here, we are starting from the gravitational perspective,

without selecting a preferred solution, and deriving matter from the geometry of spacetime.

Obviously, this formulation should reproduce the standard properties of matter in the flat

limit, but will also select a preferred formulation from the gravitational perspective. For

example, such a reversed approach has recently led to conceptually and technically strong

results regarding the coupling of matter to three dimensional quantum gravity [2, 3].

The concrete implementation of this procedure relies on a the gauge symmetries of

gravity, that is, diffeomorphisms and local Lorentz transformations. The idea is to locally

break these symmetries by introducing fixed membranes of various dimensions embedded in

the spacetime manifold. Restoring the full gauge invariance transforms the would-be gauge

parameters into dynamical variables living on the membranes. These new fields describe

the matter degrees of freedom; the diffeomorphism and Lorentz gauge symmetries being

respectively related to the embedding, and the momentum and spin of the membrane.

The detailed account of the above derivation in the deSitter gauge theory formulation

of gravity is the content of the first section of this paper. This covers the particle case

derived in [22] and the string case which is new. In section two, we study the physical

interpretation of the obtained formalism by making contact with the description of matter

in flat space in terms of pseudo-classical variables [8, 16, 18]. In this context, we compute

the invariants associated to a particle and to a string to unravel the physical picture

emerging from the formalism. Finally, section three is devoted to the variational problem

of the actions of section one. We review the results of [22] for the particle, and find similar

equations of motion for the string. We derive the corresponding Einstein equations and

discuss some solutions for the spinless string case. Finally, we discuss some perspectives

concerning the inclusion of the Nambu-Goto string in spinfoam models of four-dimensional

quantum gravity.

2. Gauge defects in general relativity

We firstly recall the basics of the McDowell-Mansouri formulation of four-dimensional gen-

eral relativity (GR) with positive cosmological constant. Then, we include matter by locally

breaking the symmetries of the theory.
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2.1 deSitter gauge theory formulation of gravity

The idea that first order GR with zero cosmological constant is related to a gauge theory

of the Poincaré group has been investigated for the last fifty years following the pioneering

works of Utiyama [9], Kibble [10] and Sciama [11]. In this framework, the fundamental

fields of first order GR, the coframe e and metric connection A, can be combined into a

single Cartan connection taking value in the Poincaré Lie algebra. In fact, it turns out that

this more unified description, relying on the notion of Cartan geometry, can be extended to

all values of the cosmological constant. The idea is to construct first order GR from a gauge

theory with symmetry group the isometry group associated to the maximally symmetric

solution of the corresponding Einstein equations, that is, the Poincaré, deSitter and anti-

deSitter groups in the Λ = 0, Λ > 0 and Λ < 0 cases respectively. For a detailed account

on the relation between gravity and Cartan geometry, see [21].

However, unlike three-dimensional gravity, GR in four dimensions is only invariant

under the Lorentz subgroup of the above larger isometry groups. For instance, in the

Λ = 0 case, the Einstein-Cartan Lagrangian is not invariant under local translations and

thus is not Poincaré invariant. Hence, four-dimensional gravity is not a true gauge theory

but rather a broken phase of a gauge theory based on a larger isometry group than the

Lorentz group. This symmetry breaking can be described in terms of Higgs fields in the

Cartan gauge theories where GR is obtained by choosing the appropriate Lorentz-invariant

ground state. See [12] and references therein for details.

This gauge theory formalism of gravity has a substantial geometrical interpretation,

and has shown to be powerfull in the context of three-dimensional quantum gravity. For

our purposes, namely the introduction of matter, it will be very convenient, allthough not

necessary, to pack the co-frame e and the connection A in a single object and to work

within this formalism. In this paper, we will essentially work in the Λ > 0 case, supported

by experimental evidence, in both Lorentzian and Riemannian signatures, keeping track

of the Λ = 0 situation as a limiting case. Hence, we will be interested in the isometry

group G = SO(η5) of a flat five dimensional metric η5 = (σ2,+,+,+,+), with σ = i

(resp. σ = 1) in Lorentzian (resp. Riemannian) signatures, that is, the deSitter group

G = SO(4, 1) (resp. the rotation group G = SO(5)).

2.1.1 The deSitter algebra

The deSitter (resp. rotation) algebra so(η5) is a real ten-dimensional semi-simple Lie

algebra. Let (σAB)A<B=0,...,4, σAB = −σBA, denote a basis of generators, and (π, Vη5)

be the vector representation of so(η5). In this representation, the generators are given

by the ten, five by five matrices with matrix elements π(σAB)IJ = δI
5 Aη5 JB − η5 AJδI

5 B ,

I, J = 0, . . . , 4. Consider the basis relabelling leading to the 6+ 4 decomposition of so(η5):

so(η5) = W ⊕ V, (2.1)

where

W = R{σab}a<b=0,...,3, and V = R{Pa}a=0,...,3,

– 3 –
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with Pa = l−1 σa4. The rescalling1 of the generators involves a factor l with dimension of

a length. It is related to the cosmological constant Λ > 0 by requiring that deSitter space

with radius l is a solution to the vacuum Einstein equations with positive cosmological

constant Λ. This leads to the relation l2 = 3/Λ.

The matrix elements of the five by five matrices π(σab) and π(Pa) are read out of the

vector representation of the deSitter (resp. rotation) generators σAB.

In this presentation, the Lie algebra structure of so(η5) is given by

[σab, σcd] = ηadσbc + ηbcσad − ηbdσac − ηacσbd

[σab, Pc] = ηbcPa − ηacPb

[Pa, Pb] = −
1

l2
σab. (2.2)

In fact, we have constructed a family of semi-simple Lie algebras parametrised by the real

number l. For finite l, all these algebras are isomorphic as Lie algebras and the structure

constants approach a well defined limit for l → ∞, when the deSitter radius becomes large,

that is, when the cosmological constant goes to zero. However, the Lie algebra recovered

in this limit is no longer isomorphic to the Lie algebras obtained for finite l. The algebra

obtained by this contraction is the Poincaré algebra (resp. the Euclidean algebra) iso(η).

The above Lie algebra structure shows that the split (2.1) only occurs at the level

of vector spaces. However, the subvector space W is in fact a subalgebra generating an

isometry subalgebra so(η) in so(η5), where η = (σ2,+,+,+) is the diagonal form of a

Lorentzian (resp. Riemannian) metric g on M , i.e., so(η) = so(3, 1) (resp. so(η) = so(4)).

Note that allthough the split (2.1) is not deSitter (resp. SO(5)) invariant, it is preserved

under the adjoint action of the Lorentz (resp. SO(4)) subgroup; the underlying Cartan

geometry is reductive. Concerning the subspace V , the commutation relations (2.2) show

that it is not a subalgebra but is isomorphic as a vector space to the vector representation

Vη = R
3,1 (resp. Vη = R

4) of so(η), by dimensional considerations.

Therefore, there exists an inclusion map

ι : so(η) ⊕ Vη → W ⊕ V, (2.3)

embedding so(η) (resp. Vη) into the deSitter algebra so(η5) as a Lie subalgebra (resp. as

subvector space).

Using this isomorphism, we can relate the adjoint action of the isometry subgroup

associated to the split (2.1) on the translational part V of the deSitter algebra so(η5) and

the action of an isometry in Vη. A Lorentz transformation (resp. a rotation) Λ in Vη is

related to the adjoint action on ι(Vη) by the relation ι(Λv) = Λι(v)Λ−1, forall v in Vη,

where on the right hand side Λ is an element of the subgroup SO(η) ⊂ SO(η5). In terms

of the chosen basis of V , the relation yields ΛPaΛ
−1 = Λb

aPb.

We now endow the so(η5) algebra with a metric structure. Let 〈, 〉 = −1
2 tr be a non-

degenerate, symmetric bilinear form on so(η5), constructed from the trace ‘tr’ in the vector

1Note that the components of the elements of so(η5) in the above basis are rescalled accordingly, i.e.,

all X in so(η5) is written X = (1/2)XABσAB = (1/2)Xabσab + XaPa, with Xa = lXa4 acquiring the

dimension of a length.
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representation. This metric is invariant under the adjoint action of the deSitter (resp.

rotation) group

〈w1,w2〉 = 〈Adg(w1),Adg(w2)〉, (2.4)

with Adg(w) := gwg−1, forall wi in so(η5) and g in SO(η5), and is accordingly an invari-

ant on each orbit of the adjoint action of the subgroup SO(η) on the Lie algebra so(η5).

Since the deSitter (resp. rotation) algebra is semi-simple, the above metric is necessarily

proportional to the Killing form.

This bilinear form is defined by the evaluations

〈σab, σcd〉 = ηacηbd − ηadηbc

〈Pa, Pb〉 =
1

l2
ηab

〈σab, Pc〉 = 0. (2.5)

This shows that the split (2.1) is in fact an orthogonal decomposition of the deSitter (resp.

rotation) algebra in the above bilinear form, i.e., V = W⊥ and that the isomorphism

W ≃ so(η) is an isometry with the isometry algebra equipped with its standart bilinear

form, while the metrics on Vη and V are equivalent up to rescaling.

Note that in the l → ∞ contraction, the above metric becomes degenerate when re-

stricted to the translational part. This is due to the non-semi-simplicity of the Poincaré

(resp. Euclidean) algebra and this bilinear form can only be used in the finite radius l

case. In the non-semi-simple limit, one has to work with a different bilinear form ob-

tained by relaxing the full Poincaré (resp. Euclidean) Ad-invariance requirement. In this

case, exploiting the semi-direct product structure, one can obtain a perfectly well defined,

non-degenerate, SO(η)-invariant, symmetric bilinear form (, ) on iso(η) defined by the eval-

uation

(u1,u2) = (w1 ⊕ v1, w2 ⊕ v2) = −
1

2
tr w1w2 + η(v1, v2), (2.6)

forall ui = wi ⊕ vi in the Poincaré algebra iso(η) = so(η) ⊕ Vη.

2.1.2 deSitter gauge theory formalism: action and symmetries

Action. The dynamical fields of the first order formulation of gravity on a four-

dimensional, oriented, differential manifold M are defined by the pair (e,A) where e is

the soldering form on M and A is (the pull-back to M by local sections of) a metric con-

nection on the bundle of η-orthonormal frames, that is, the principal bundle over M with

structure group SO(η). The direct sum decomposition (2.1) (together with the isomor-

phism (2.3)) can be exploited to combine the co-frame e and the metric connection A in a

so(η5) Cartan connection

A = A ⊕ e. (2.7)

Computing the curvature of the Cartan connection yields a Lorentz and a pseudo-

translational component

FA =

(

FA −
Λ

3
e ∧ e

)

⊕ dAe, (2.8)

– 5 –



J
H
E
P
0
9
(
2
0
0
8
)
1
2
6

where FA = dA + 1
2 [A,A] is the curvature of the connection A, and dA is the covariant

derivative with respect to the connection A.

Constructing a suitable gravitational Lagrangian out the above field strength requires

an expression with no metric dependence. If one further requires to have a fully deSitter

invariant quantity, the Lagrangian must also be quadratic in the field strength. Combining

these two requirements leads to a unique possible Lagrangian which turns out to have

trivial variations, i.e., corresponds to a topological theory. But gravity is not a gauge

theory of the deSitter group, it is only invariant under local Lorentz transformations. It is

precisely the breaking of the deSitter invariance down to Lorentz invariance that introduces

the local degrees of freedom of gravity into the formalism. To achieve this symmetry

breaking, we introduce the projection map φ : W ⊕ V → W associated to the orthogonal

decomposition (2.1). The McDowell-Mansouri (MM) action [20] then follows

SMM[A] = α

∫

M

〈∗φ[FA] ∧ φ[FA]〉. (2.9)

Here, the star ∗ : Ω2(V ) → Ω2(V ) denotes the internal Hodge operator acting on the

exterior algebra over V , i.e., ∗(X)ab = 1
2ǫ cd

ab Xcd, forall X in Ω2(V ). We are implicitly

using the isomorphism Ω2(V ) ≃ so(η) between the space of two-forms over V ≃ Vη and

the isometry algebra. The coupling constant α is related to the Newton constant G by

α = 3/(16πGΛ).

It is immediate to see that the above action reduces to the Einstein-Cartan action with

cosmological constant

SGR[e,A] = −
1

16πG

∫

M

tr ∗e ∧ e ∧

(

FA −
Λ

6
e ∧ e

)

, (2.10)

augmented with a topological term:

SMM[e,A] = −SGR + α

∫

M

tr ∗FA ∧ FA. (2.11)

The second term is the integral of the Euler class which has trivial variation because of the

Bianchi identity dAFA = 0. Thus, the de-Sitter gauge theory defined by the action (2.9) is

classically equivalent to GR.

Note that the zero cosmological constant limit of the Mac-Dowell-Mansouri action (2.9)

is not GR with zero cosmological constant, but rather a topological field theory. To obtain

GR from the Cartan perspective, one needs to contract the deSitter algebra to the Poincaré

algebra, change the bilinear form and start with a different Lagrangian; the relation of the

gauge theory Lagrangians associated to different values of the cosmological constant is an

open question.

Symmetries. The theory is invariant under two sets of symmetries. First, it is invariant

under the action of the (connected component of the) diffeomorphism group Diff(M). If

φ : M → M is an diffeomorphism of M , the action is invariant under the corresponding

action on the gauge field

A 7→ φ−1∗A, (2.12)

– 6 –
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where φ∗ is the associated pull-back map acting on forms. Note that this transformation

acts on the space of fields, even if it is induced by an action on the manifold. Next, as

remarked above, the theory is invariant under local Lorentz transformations:

A 7→ −dgg−1 + gAg−1, (2.13)

where g is a smooth map from M to the Lorentz subgroup SO(η) ⊂ SO(η5) associated to

the split (2.1).

To introduce matter, we now follow the ideas recently developed in the BF theory

context in three [1] and four dimensions [5 – 7, 22]. The idea is to locally break the dif-

feomorphism and gauge symmetry of GR by fixing sub-manifolds of M and integrating

against them suitable powers of the fields e and A, i.e., of the Cartan connection A, pro-

jected along preferred directions in the appropriate tensor power of so(η5). Then, one can

promote the would-be gauge parameters to local degrees of freedom.

2.2 Inclusion of defects

2.2.1 Worldlines

The simplest way of proceeding consists in introducing a fixed, non-dynamical, one-

dimensional submanifold γ ⊂ M , defined by the fixed embedding x : R → M ; τ 7→ x(τ),

and a fixed constant element u∗ in the dual of the deSitter algebra so(η5)
∗. We note

u = w ⊕ v the element of the deSitter algebra associated to u∗ via the Killing form, i.e.,

u∗(w) = 〈u,w〉 for any w in so(η5). Consider adding to the action (2.9) the following

symmetry breaking functional of the gauge field

S[A] =

∫

γ

〈u,A〉. (2.14)

The above term breaks the symmetry of the theory at the location of the curve γ; the

diffeomorphism gauge symmetry is broken down to a symmetry under the diffeomorphisms

keeping γ fixed, and the Lorentz gauge symmetry is broken down to an invariance under

the Lorentz subgroup leaving the fixed internal vector u invariant. Note that the above

term is nevertheless invariant under reparametrisation of the curve γ.

We now wish to restore the gauge invariance of the theory. We proceed by performing

an inverse gauge transformation on the dynamical gauge field A, that is, an operation on

the space of fields such that its composition with gauge transformation compensates to the

identity. This operation will obviously only affect the symmetry breaking term. Firstly, we

perform an inverse diffeomorphism gauge transformation A 7→ φ∗A, with gauge parameter

φ. The gauge transformed symmetry breaking term S[φ∗A] now also depends on (the

restriction X : γ → M to γ of) the gauge parameter φ and becomes

S[A;X] =

∫

γ

〈u,X∗A〉

=

∫

X(γ)
〈u,A〉, (2.15)

– 7 –
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where, in a local coordinate patch, X∗A = Aµ(X(τ))∂τ Xµ(τ)dτ . By doing so, we have

introduced a new variable in the theory; the pull back to γ of the would-be gauge parameter.

Now, X in Diff(γ,M) is promoted to a dynamical variable.2 As such, we have to specify

its transformation properties. It is required to transform trivially under local Lorentz

transformation and as

∀φ ∈ Diff(M), X 7→ φ ◦ X, (2.16)

under spacetime diffeomorphism. Then, the very diffeomorphism symmetry lost by the

introduction of the fixed curve γ, that is, the invariance under diffeomorphisms shifting

the curve, is restored in the (partial) symmetry breaking term (2.15) by rendering the

gauge parameter X, or equivalently, the worldline X(γ), dynamical.

We can now proceed in an analogous way to restore the Lorentz gauge invariance of the

theory. We perform an inverse finite gauge transformation A 7→ g−1dAg labelled by the

parameter g in the (partial) symmetry breaking term (2.15). This procedure introduces

a new field Λ : γ → SO(η) in the theory, the restriction to γ of the gauge parameter

g. This field is promoted to a dynamical variable transforming trivially under spacetime

diffeomorphisms and as

∀g ∈ C∞(M,SO(η)), Λ 7→ g ◦ Λ, (2.17)

under Lorentz gauge transformations. Then, introducing the deSitter-valued one-form

ΩA = Λ−1dΛ + Λ−1AΛ, (2.18)

we are led to the dynamical, gauge invariant action [22]:

Sparticle[A;X,Λ] =

∫

X(γ)
〈u,ΩA〉. (2.19)

Exploiting the orthogonal decomposition (2.1), it is immediate to recast the above action

in the form obtained in [8] by Balachandran and collaborators :

Sparticle[e,A;X,Λ] =

∫

X(γ)
〈v,Λ−1e〉 + 〈w,Λ−1dAΛ〉 (2.20)

where we have used the decomposition in reductive components of the deSitter one form

ΩA:

ΩA = Λ−1dAΛ ⊕ Λ−1e,

with, in the translational part, the matrix Λ acting on the algebra indices a, b. As we will

see, for specific values of the elements w and v, the first term becomes the standart first

order particle action while the second term is a Wess-Zumino term describing a pseudo-

classical spin.

2More precisely, it is the composition X ◦x : R → M of the diffeomorphism X with the fixed embedding

x that we are interpreting as the dynamical worldline of the particle.
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2.2.2 Worldsheets

Similarly, we can break the gauge invariance of GR along two-surfaces. A natural object

to integrate along a two-dimensional submanifold of M is the second exterior power of the

Cartan connection A. This object takes value in the antisymmetric part of so(η5)⊗ so(η5).

The above tensor square admits a decomposition induced by the split (2.1) given by

so(η5) ⊗ so(η5) = (W ⊗ W ) ⊕ (W ⊗ V ) ⊕ (V ⊗ W ) ⊕ (V ⊗ V ). (2.21)

This vector space can be endowed with a Lie algebra structure [13], but for our purposes it

will be sufficient to consider this space at the level of metric vector spaces. Note however

that the antisymmetric part of so(η5) ⊗ so(η5) contains the vector space Ω2(V ) = R{Pa ∧

Pb}a<b isomorphic to Ω2(Vη) and to the Lorentz algebra so(η).

To endow the tensor square with a metric structure, we consider the bilinear form

〈, 〉 := 1
2〈, 〉

⊗2 constructed from the tensor product of the bilinear form 〈, 〉 with itself.

This non-degenerate, symmetric bilinear form on so(η5)
⊗2 is invariant under the diagonal

adjoint action of the deSitter group:

〈[Adg ⊗ Adg](w1), [Adg ⊗ Adg](w2)〉 = 〈w1,w2〉, (2.22)

forall wi in so(η5)
⊗2, and g in SO(η5). Accordingly, it is also an invariant on each orbit of

the SO(η) subgroup action.

The explicit evaluations of this bilinear form on the basis elements associated to the

decomposition (2.21) read

〈σab ⊗ σef , σcd ⊗ σgh〉 =
1

2
(ηacηbd − ηadηbc)(ηegηfh − ηehηfg)

〈σab ⊗ Pe, σcd ⊗ Pf 〉 =
1

2l2
(ηacηbd − ηadηbc)ηef

〈Pa ⊗ σcd, Pb ⊗ σef 〉 =
1

2l2
ηab(ηceηdf − ηcfηde)

〈Pa ⊗ Pc, Pb ⊗ Pd〉 =
1

2l4
ηabηcd, (2.23)

with vanishing of all other evaluations. Note that when restricted to Ω2(V ), this metric

reduces to the standart bilinear form on so(η), up to rescalling:

〈Pa ∧ Pc, Pb ∧ Pd〉 =
1

l4
(ηabηcd − ηadηbc).

Armed with this metric structure, we can now define the appropriate symmetry breaking

term.

We firstly introduce a fixed, non-dynamical, compact and closed two-surface Σ ⊂ M

defined by the fixed embedding x : R
2 → M ; τ 7→ x(τ), with τ = (τα), α = 0, 1. We then

fix a constant element w∗ in the antisymmetric part of so(η5)
∗⊗so(η5)

∗, associated to w in

so(η5)⊗ so(η5) via the bilinear form 〈, 〉. In what follows, we will use the symbolic notation

w = u1 ⊗ u2, with ui = wi ⊕ vi and antisymmetrised tensor product, to keep track of the

decomposition of the element w according to the basis associated to (2.21).
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Consider adding to the gravitational action (2.9) the following symmetry breaking

functional of the gauge field:

S[A] =

∫

Σ
〈w,A ∧ A〉. (2.24)

This term breaks the diffeomorphism symmetry down to the diffeomorphisms keeping the

surface Σ fixed, and the Lorentz gauge invariance is broken down to an invariance under

the Lorentz subgroup keeping the internal tensor w fixed under the diagonal adjoint action.

Note that the symmetry breaking term is nevertheless invariant under reparametrisation

of the worldsheet Σ. As for the particle, we can now restore the gauge invariance of the

theory by performing an inverse gauge transformation on the gauge field A.

We start by an inverse diffeomorphism gauge transformation labelled by φ. The bulk

action is invariant while the symmetry breaking term is shifted. Noting X : Σ → M the

restriction to Σ of φ, it becomes

S[A;X] =

∫

Σ
〈w,X∗(A ∧ A)〉

=

∫

X(Σ)
〈w,A ∧A〉 (2.25)

where, in a local coordinate patch,

X∗[A ∧ A] = Aµ(X(τ))Aν(X(τ)) ǫαβ ∂αXµ(τ) ∂βXν(τ) d2τ,

with ǫ the two dimensional totally antisymmetric tensor normalised by ǫ01 = 1. Once that

X is promoted to a dynamical variable, transforming as specified in (2.16), the above term

becomes invariant under the action of Diff(M).

Next, we perform an inverse finite gauge transformation with gauge parameter g on

the gauge field A. The procedure introduces a new field Λ : Σ → SO(η) in the theory, the

restriction to Σ of the gauge parameter g. This variable is then promoted to a dynamical

field, transforming as in (2.17), and the symmetry breaking term becomes a gauge invariant,

dynamical action

Sstring[A;X,Λ] =

∫

X(Σ)
〈w,ΩA ∧ ΩA〉, (2.26)

with the deSitter valued one-form ΩA defined as for the particle.

The introduction of the diffeomorphism X in Diff(Σ,M) has rendered the embedding of

the string Σ dynamical, thus restoring full diffeomorphism invariance, and the introduction

of the group valued map Λ : Σ → SO(η) has made the theory fully Lorentz gauge invariant.

Hence, the final action (2.26) is invariant under spacetime diffeomorphisms, local Lorentz

transformations and also under worldsheet diffeomorphisms.

It is important to stress that both the particle (2.19) and string (2.26) actions can be

defined in the zero cosmological constant limit, by contracting the deSitter algebra to the

Poincaré algebra, and respectively replacing the bilinear forms 〈, 〉 and 〈, 〉⊗, by (, ) and

(, )⊗2, with the Poincaré bilinear form (, ) defined in (2.6).

– 10 –



J
H
E
P
0
9
(
2
0
0
8
)
1
2
6

Using the decomposition (2.21) to make the dependence on the co-frame e and the

Lorentz connection A more transparent, one can see that the above action contains all

gauge invariant, two-form combinations3 of e and A

Sstring[e,A;X,Λ] =

∫

X(Σ)
〈v1 ⊗ v2, Λ−1e ∧ Λ−1e〉

+ 2

∫

X(Σ)
〈v1 ⊗ w2, Λ−1e ∧ Λ−1dAΛ〉

+

∫

X(Σ)
〈w1 ⊗ w2, Λ−1dAΛ ∧ Λ−1dAΛ〉. (2.27)

As we are about to see, the above actions describes a general spinning string on a non-trivial

background spacetime.

In the form given above (2.27), the first term appears to be the generalisation to

curved spacetimes of the type of formulation of string theory considered by Balachandran

and collaborators in [16]. For specific choices of the element v1 ⊗ v2, this term describes a

Nambu-Goto, null or tachionic string. The generalisation obtained by adding the second

and third terms were considered in the flat case by Stern et al. [18, 19] and describe spinning

contributions for the string.

We now study the precise point of contact between the symmetry breaking procedure

followed here and this particular formulation of matter. This will help clarify the physical

interpretation of the framework, since it is not immediate to grasp the physical picture

underlying this description of matter. Indeed, the theories of gravitating particles or strings

considered above are described by the diffeomorphism and Lorentz gauge parameters of

gravity pulled-back to the worldline or worldsheet, that is, a pair of smooth fields (X,Λ)

having support on the worldline or worldsheet and taking value in the spacetime manifold

M and the isometry group SO(η) respectively. How do these variables relate to standart

notions such as position, momentum, spin? While the variable X can easily be interpreted

as describing the embedding of the particle or the string, the role played by the group

element Λ is at this level quite obscure. In fact, we are about to see that this group

variable encodes the momentum and spin of the matter excitation.

3. Physical interpretation

We now study the physical picture emerging from the types of matter theories considered

above. We proceed in two steps. First, we discuss a limiting case of the above framework

to establish a point of contact with the description of matter in terms of pseudo-classical

variables, or Poincaré group coordinates in flat space [8, 16]. Then, we study some examples

showing how the formalism relates to the standart formulation of particles and strings on

arbitrary backgrounds.

3Up to multiplication by the internal Hodge operator.
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3.1 Flat limit

In this section, we temporarily forget about the gravitational action and focus only on the

matter sector of the theory. To pinpoint the relation to the Poincaré or pseudo-classical

description of matter, we will work in the zero cosmological constant limit of the above

framework. In this limiting procedure, we have seen that the deSitter algebra so(η5)

contracts to the non-semi-simple Poincaré Lie algebra iso(η), and that the bilinear form

〈, 〉 used to define the actions degenerates. Hence, we have to work with the bilinear form

on the Poincaré algebra (, ) defined in (2.6) which is only invariant under the Lorentz

subgroup. So, the algebraic framework remains well defined4 in the zero cosmological case.

The easiest way of understanding how the algebraic variables (X,Λ) relate to ordinary

notions such as position, momentum and spin is to fix a particular background geometry

described by the Cartan connection A. The simplest possible background is flat Minkowski

spacetime which is obtained from the deSitter vacuum solution of the theory in the zero

cosmological constant, i.e., infinite radius limit. We can now study the physics of the type

of theories obtained above by evaluating the particle (2.19), and string (2.26) actions on a

such solution.

Flat Minkowski spacetime corresponds to the connection

Aflat = A ⊕ e, with A = 0 and e = δa
µdxµ ⊗ Pa, (3.1)

with the spacetime manifold M identified with the internal space Vη.

When evaluating the matter actions (2.19), (2.26) on the above background in the

zero cosmological limit, both the particle and string actions share a common building

block; the Poincaré valued one-form ΩX∗A evaluated on the flat connection pulled-back to

the worldline or worldsheet

ΩX∗Aflat
:= Ω(X,Λ) = Λ−1dΛ ⊕ Λ−1dX, (3.2)

with X and Λ respectively describing the embedding of the particle or the string in flat

space Vη and in the isometry subgroup SO(η). But if X and Λ are regarded as coordinates

on the Poincaré group manifold, this object can be related to a well known quantity; Ω is

equal to the left-invariant Maurer-Cartan form Θ on the Poincaré algebra.5 This is precisely

the point of contact with the Poincaré or pseudo-classical description of matter, where the

degrees of freedom of particles and strings are naturally parametrised by elements of the

4In fact, since the constant element u used to define the particle action lives in the dual of the Lie

algebra, there is no need for any metric structure on the Lie algebra to define the action for a free particle

in flat space. The free particle action can be entirely defined by using the dual pairing map. It is only the

coupling to gravity which selects a particular bilinear form. This statement also holds for the string.
5The Poincaré Maurer-Cartan form Θ can be calculated by using the five by five matrix representation

of the Poincaré group U(Λ, X) =

 

Λ X

0 1

!

, with Λ in SO(η) and X in T 4
≃ Vη. The computation yields:

Θ = U−1dU =
1

2
(Λ−1dΛ)abσab + (Λ−1dX)aPa.
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Poincaré group, or more precisely by a flat, pure gauge Poincaré connection Θ pulled-back

to the worldline or worldsheet.

The fact that the degrees of freedom of massive, spinning matter in flat space are not

entirely captured by its position in space is an old idea going back, as far as we can see, to

Finkelstein [17]. In this approach, the configuration space for a point particle or a string,

or more generally a p-brane, is the connected component of the Poincaré manifold ISO(η).

Hence, a p-brane is described by the embedding of it’s worldsheet U : R
p+1 → ISO(η); τ 7→

(X(τ),Λ(τ)), in the Poincaré manifold. The translational part X describes the position,

while the Lorentz part Λ encodes the spin and the momentum. Now, when trying to

construct an appropriate globally (left) Poincaré invariant and reparametrisation invariant

Lagrangian for such degrees of freedom, a natural candidate appears to be the Maurer-

Cartan form Θ on the Poincaré algebra because of its natural (left) Poincaré invariance.

Considering the integral of the pull-back of the p+1 exterior power of this one-form to the

worldsheet of the p-brane will naturally lead to a reparametrisation invariant and globally

Poincaré invariant action. This is the point of contact between our formulation and the

Poincaré description of matter.

To understand how this formalism indeed leads to the correct dynamics for particles

and strings, we now compute the currents associated the actions (2.19), (2.26) evaluated

on a flat background.

3.1.1 Particle

In the Λ → 0 limit, the evaluation of the particle action (2.19) on the flat solution leads to

the following globally Poincaré invariant and reparametrisation independent action

Sparticle[X,Λ] =

∫

γ

(u, Ω), (3.3)

where γ is a curve in ISO(η), u = w ⊕ v, and Ω = Λ−1dΛ ⊕ Λ−1dX are elements of

iso(η) = so(η) ⊕ Vη, and (, ) is the non-degenerate, SO(η)-invariant symmetric bilinear

form on iso(η) defined by (2.6).

When the Poincaré algebra element u is chosen conveniently, this action describes

the dynamics of a massive, spinning point particle. In fact, the above general action

can describe many physical or unphysical particle dynamics depending on the value of

u, or more precisely, on the Lorentz subgroup adjoint orbit6 in which this element lies.

By this we mean that different values of u living on the same Lorentz adjoint orbit will

correspond to the same physical theory, because of the invariance of the bilinear form. To

understand these last points, we compute the currents associated to the theory defined by

the action (3.3).

As a preliminary step, we remark that, using the identity

Λ−1dΛ = AdΛ−1(dΛΛ−1),

6More precisely, the physical content of the particle theory is determined by the Lorentz subgroup co-

adjoint orbit in which the element u
∗

∈ iso(η)∗ lies. However, since we are working with a bilinear form

which is invariant under the adjoint action of the Lorentz subgroup, adjoint and coadjoint orbits under the

Lorentz subgroup are naturally identified.
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the action (3.3) can be reexpressed as

Sparticle[X,Λ] =

∫

γ

(J, ω), (3.4)

with

ω = dΛΛ−1 ⊕ dX and J = AdΛ(u) = AdΛ(w) ⊕ Λv,

by using the invariance of the bilinear form.

We are now ready to study the variational problem. Varying the embedding X of the

worldline in coordinate space yields

δSparticle =

∫

γ

(J, δω)

=

∫

γ

(J, 0 ⊕ dδX)

= −

∫

γ

d(J, Pa) δXa, (3.5)

where we have used the commutativity of the variation with the exterior differential dδ = δd

in the second line, and an integration by parts in the last step. Setting

pa = −(J, Pa), (3.6)

the projection of the Poincaré algebra element J on the translational component, the

associated motion immediately implies a first conservation law

δSparticle = 0 ⇒ dp = 0, (3.7)

that we naturally identify with momentum conservation.

Under an infinitesimal variation of the form δΛ = ǫ ◦Λ, with ǫ an arbitrary element in

so(η), the Lorentz and translational component of the Maurer-Cartan form Ω respectively

transform as

δ(Λ−1dΛ) = AdΛ−1(dǫ)

δ(Λ−1dX) = −Λ−1 ǫ dX,

and the action (3.3) varies consequently

δSparticle =

∫

γ

(J, dǫ ⊕−ǫ dX)

=

∫

γ

(J, dǫ) + dXa(J, Pb) ǫab

= −
1

2

∫

γ

[d(J, σab) + [dX ⊗ p − p ⊗ dX]ab] ǫ
ab . (3.8)

Here, we have used the Lorentz invariance of the bilinear form in the first step, and an

integration by parts when going from the second to the third line.
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Setting

sab = 〈J, σab〉, (3.9)

and noting dX ∧ p the element [dX ⊗ p− p⊗ dX] of Ω2(Vη), the associated motion follows

ds + dX ∧ p = d(X ∧ p + s) = 0, (3.10)

with the use of the first conservation law obtained above. Hence,

M = X ∧ p + s,

defines the second invariant of the particle which is therefore naturally identified with the

total angular momentum, that is, the sum of the orbital and spin angular momenta. Hence,

the variable s carries the interpretation of the spin of the particle.

To be able to conclude that the action (3.3) describes the correct dynamics of a physical

particle, we need to ensure that the variables p and s satisfy the appropriate requirements

on momentum and spin. This is achieved by making the appropriate choice of the orbit

in which the constant Poincaré element u lies. Indeed, a particle with positive mass

m, timelike momentum and spin λ corresponds to the following choice, up to Lorentz

conjugation

u = λσ12 ⊕−mP0, (3.11)

with obvious generalisation to the massless and tachionic cases. Rotating this element

through the SO(η) action gives rise to the momentum and spin of the particle:

p = m ΛP0 ∈ Vη

s = λAdΛ(σ12) ∈ so(η). (3.12)

It is then immediate to show the p and s indeed satisfy, by construction, the physical

requirements on the momentum and spin of a massive, spinning particle with timelike

momentum

pap
a = σ2 m2, p0 > 0

pa sab = 0
1

2
sabs

ab = λ2. (3.13)

3.1.2 String

The flat limit of the string action (2.26) yields the following globally Poincaré, and world-

sheet reparametrisation invariant action

Sstring[X,Λ] =

∫

Σ
(w,Ω ∧ Ω), (3.14)

where Σ is now a surface embedded in ISO(η), (, ) := 1
2 (, )⊗2, and w and Ω∧2 are elements

of iso(η) ⊗ iso(η).

As for the particle, the value of the Lorentz adjoint orbit in which the constant element

w lies determines the physical content that the theory describes. To clarify this point, we
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determine the currents associated to the above action which will give rise to the momentum

and spin of the string. These currents were computed in [18].

As we did above, we first derive a simplifying identity stating that the the string

action (3.14) can be reexpressed as

Sstring[X,Λ] =

∫

Σ
(K, ω ∧ ω), (3.15)

with

ω = dΛΛ−1 ⊕ dX, and K = [AdΛ ⊗ AdΛ](w).

We are now ready to study the variational problem.

To this aim, we start by calculating the variation of the action with respect to variations

of the embedding X of the string

δSstring = 2

∫

Σ
(K, ω ∧ δω) (3.16)

= 2

∫

Σ
(K, ω ∧ (0 ⊕ δdX))

= 2

∫

Σ
d (K, ω ⊗ Pa) δXa.

Setting

Pa = −(K, ω ⊗ Pa), (3.17)

we have thus obtained the first invariant associated to the string by extremising the above

variation

δSstring = 0 ⇒ dP = 0, (3.18)

with the Vη-valued one-form P on Σ consequently interpreted as the momentum density

of the string.

Next, we compute the variation of the action under infinitesimal Lorentz variation of

the form δΛ = ǫ ◦ Λ, with ǫ ∈ so(η). Using the transformation properties established for

the particle, it is straight-forward to obtain the variation of the action (3.14)

δSstring = 2

∫

Σ
(w,Ω ∧ δΩ) (3.19)

= 2

∫

Σ
(K, ω ∧ (dǫ ⊕−ǫ dX))

=

∫

Σ
[d(K, ω ⊗ σab) − dXa ∧ (K, ω ⊗ Pb)] ǫab

Defining the so(η)-valued one-form on Σ

Sab = (K, ω ⊗ σab), (3.20)

we obtain, extremising the above variation, the motion

dS + dX ∧ P = d(X ∧ P + S) = 0, (3.21)
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where the wedge product acts simultaneously on the cotangent bundle to the surface and

on internal, or target space. This relation expresses the conservation of the total angular

momentum of the string

M = X ∧ P + S,

with the spin component given by S.

Accordingly, the action (3.14) describes the dynamics of a spinning string with mo-

mentum density P and spin S, and the full action (2.26) describes the interaction of a

spinning string with gravity.

The situation is however not as clear as for the particle since the (squared) Poincaré

algebra element w is left unspecified, by lack of knowledge of the properties to be satisfied

by strings admitting spin. We can nevertheless write down the value of w corresponding

to the spinless, Nambu-Goto string. This theory corresponds to the choice [16]:

w =
1

2πα′
P3 ∧ P0 ∈ Ω2(Vη) ⊂ iso(η)⊗2, (3.22)

where T = (1/2πα′) is the string tension, α′ being the Regge slope. With such a value of

w, computing the momentum and spin one-forms leads to

Pa =
1

2πα′
[AdΛ(P3 ∧ P0)]ab dXb and Sab = 0, (3.23)

as expected for the Nambu-Goto string. We will see in the next section how this theory is

related to the Nambu string in further detail.

Having studied the flat space limit and clarified the interpretation of the variables

(X,Λ) extracted from the gauge symmetries of gravity, we now switch back on the gravi-

tational interaction with positive cosmological constant. The geometry is now fluctuating,

no longer constrained to the flat solution, and switching on the cosmological constant has

transformed the Poincaré algebra into the deSitter algebra. In this general case, we discuss

the simplest possible examples with non-trivial background geometry.

3.2 The spinless case

The simplest examples of the types of theories considered here are the spinless particle

and the Nambu-Goto string. We show how the corresponding actions relate to more stan-

dart formulations of particles and strings on arbitrary background geometries. We simply

generalise to the MacDowell-Mansouri framework the flat space calculations done in [16].

3.2.1 Spinless particle

A spinless particle coupled to MM gravity is described by an element u = 0 ⊕ v in V ⊂

so(η5). In this case, the action (2.19) reduces to

Sparticle[e;X,Λ] =

∫

γ

dτ L[e;X,Λ], with L[e;X,Λ] = 〈J, eτ 〉, (3.24)

where eτ := ea
µPa∂τX

µ is the image in V of the (timelike) tangent vector to the curve,

and J = AdΛ(u) = −l2p coincides with the momentum p of the particle, rescalled with the

cosmological length to give the action the correct dimension.

– 17 –



J
H
E
P
0
9
(
2
0
0
8
)
1
2
6

The adjoint orbit of the Lorentz subgroup in which u, or equivalently J, lies is labelled

by the invariant

C = 〈J,J〉,

and determines what kind of spinless particle the theory describes, i.e, wether the particle

is massive, massless or tachyonic. A massive particle with mass m and timelike momentum

corresponds to the orbit labelled by

C = σ2 l2m2. (3.25)

The constant element u := u(m, 0) = ml2P0 is then a chosen representative of the associ-

ated conjugacy class and characterises the theory.

Now let us show how this choice indeed leads to the correct action of a massive particle.

Varying Λ as we did in the flat case leads to δJ = [ǫ,J], and the associated variation follows

δL = 〈[ǫ,J], eτ 〉

= 〈ǫ, [J, eτ ]〉, (3.26)

where we have used the full deSitter invariance of the bilinear form. The corresponding

motion yields

−
1

l2
J ∧ eτ = 0,

with the wedge product acting on internal space. This equation states that J, or equiva-

lently the momentum p, and eτ are parallel (in internal space).

Thus, there exists an field α such that J = αeτ . We can solve for α by exploiting the

mass shell constraint

〈J,J〉 = α2〈eτ , eτ 〉 = σ2l2m2.

Hence, one is led to the following values of J:

J = α eτ , with α = ±
ml

√

σ2〈eτ , eτ 〉
. (3.27)

To solve the sign ambiguity, one has to supplement the particle action with the sign con-

straint σ2L > 0 on the Lagrangian, ensuring that if the worldline is future pointing, the

particle will have positive energy.

Then, the positive solution is selected, and reinserting J into the original action (3.24)

leads to the standart action for a massive spinless particle

Sparticle[e;X] = σ2m L[γ, e] = σ2m

∫

γ

dτ
√

σ2η(eτ , eτ ), (3.28)

that is, the length L[γ, e] of the worldline γ, measured in the geometry determined by the

co-frame e, weighted by the mass m of the particle.
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3.2.2 Nambu-Goto string

Similarly, we can obtain the Nambu-Goto string through an appropriate adjoint orbit

choice. A spinless string is described by an element w = v1 ⊗ v2 whose antisymmetric part

lies in Ω2(V ), with Ω2(V ) included in so(η5) ⊗ so(η5) as a vector subspace.

Choosing a local basis {∂/∂τα}α=0,1 of the tangent space TpΣ, with p in Σ, the corre-

sponding action yields

Sstring[e,X,Λ] =

∫

Σ
d2τ L, with L = 〈K, B〉, (3.29)

where

B := ea
µeb

νPa ∧ Pb Σµν , Σµν = ǫαβ∂αXµ∂βXν ,

is the image in inertial space of the bivector Σµν associated to the surface Σ, and K =

[AdΛ ⊗ AdΛ](w). The bivector Σµν is assumed to be constructed from a timelike and a

spacelike vector. As for the particle, we supplement the string Lagrangian with the strict

positivity constraint σ2L > 0.

The type of string theory defined by the action (3.29) depends on the Lorentz sub-

group orbit in the space of (internal) bivectors Ω2(V ) in which K, or equivalently w lies.

As already remarked, the space Ω2(V ), being a real six dimensional vector space, is nat-

urally identified with the isometry algebra so(η) and carries the adjoint representation.

Furthermore, the bilinear form 〈, 〉 on so(η5) ⊗ so(η5) reduces on Ω2(V ) to the isometry

algebra Killing form, up to rescalling, and can thus be used to characterise the orbit space

of the adjoint action of the isometry subgroup SO(η) on Ω2(V ). The orbit in which K lies

is labelled by the two invariants

C1 = 〈K,K〉 , and C2 = 〈 ∗K,K〉,

related to the quadratic and pseudo-scalar Casimirs of the isometry algebra so(η). A

choice of orbit specifies if the string is the Nambu-Goto, tachyonic or null string [16].

As anticipated above, the orbit corresponding to the standart Nambu-Goto string is the

following

C1 = σ2

(

l2

2πα′

)2

, and C2 = 0. (3.30)

The constant element w = (l4/2πα′)P3∧P0 is then a chosen representative of the associated

conjugacy class and thus determines the theory.

To show that the above choice of w leads to the Nambu-Goto action, we proceed to

the variation of the action (3.29) with respect to the field Λ as we did for the particle. A

general variation of Λ leads to the variation δK = [ǫ,K] of K, and the associated motion

follows

[K, B ] = 0 ⇔ K ∈ C(B).

If K is regarded as an element of so(η), solving this equation for K is equivalent to finding

the centraliser C(B) of B in so(η). Using the fact that [X, ∗X] = ∗[X,X] = 0 forall X

in so(η), one can show that C(B) is of dimensions two (this is a reflection of the rank of
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the isometry algebra) and generated by B and ∗B as a real vector space. Hence, K is

necessarily of the form

K = βB + γ ∗ B. (3.31)

This condition is the analogue of the parallelism of the momentum and (image in internal

space of the) velocity vectors obtained earlier for the point particle. Since the B field is

simple, that is, of the form e ∧ e, it automatically satisfies 〈∗B,B〉 = 0. Hence, from the

condition (3.30) on the invariants, one is led to

(β2 + σ2γ2)〈B,B〉 = σ2

(

l2

2πα′

)2

, and 2σ2β γ〈B,B〉 = 0,

where we have used ∗2 = σ2, and 〈∗B, ∗B〉 = σ2〈B,B〉. The first equation tells us that

〈B,B〉 is different from zero. Thus, from the second we obtain that either β or γ is zero.

If β = 0, plugging the value of K into the action yields a vanishing action by simplicity of

the B field, which contradicts the strict positivity requirement on the Lagrangian. Thus,

γ = 0 and we are left with

K = βB, with β = ±
l2

2πα′

1
√

σ2〈B,B〉
. (3.32)

The sign constraint on the Lagrangian implies that only the positive solution is admissible.

Then, inserting the obtained value of K in the action leads to the Nambu-Goto action for

string theory on a curved background

Sstring[e,X] = σ2 1

2πα′
A[Σ, e], (3.33)

where

A[Σ, e] =

∫

Σ
d2τ

√

−
σ2

2
tr B2, (3.34)

is the area of the surface Σ measured with respect to the background geometry determined

by the tetrad e. This is because the trace of B2 is related to the metric induced on the

surface by

−
1

2
tr B2 = det X∗g,

with g = η(e ⊗ e) the metric on M .

To close this discussion on the physical interpretation of the formalism, we summarise

the main lessons. The actions (2.19), (2.26) describe the coupling of general particles and

strings to gravity. The matter variables X and Λ, extracted from the symmetries of the

gravitational interaction, respectively encode the embedding and the momentum and spin

of the particle or string. The value of the latter physical quantities is dictated by the

classifier elements u or w. For appropriate values, the theory describes massive particles

with spin or the Nambu-Goto string augmented with spinning contributions.

Finally, it is important to stress that the above derivation linking the spinless frame-

work to more conventional formulations of particles and strings is not tied to the presence
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of a cosmological constant and to the Mac-Dowell-Mansouri formulation. In the zero cos-

mological constant case, one simply needs to replace the bilinear forms in the calculations

presented above with their Poincaré analogues, which will only involve the metric on the

vector representation and the trace on the Lorentz algebra in the particle and string case

respectively. The results obtained will be the same than the ones obtained in the deSitter

case by setting l = 1 in the choice of the orbits and in the calculations that follow.

4. Variational problem of the coupled system

We are now ready to study the motions of the full theory defined by the GR action (2.9)

augmented with, firstly, the particle action (2.19) and secondly the string action (2.26). We

start by considering the matter sector before computing the variations of the gravitational

variables.

4.1 Matter motion

Based on the flat space experience, we now firstly compute the variations of the action (2.19)

describing a particle coupled to gravity. Then, we will consider the variations of the string

action (2.26).

4.1.1 Particle

Under an infinitesimal variation of the Lorentz group variable δΛ, the gauged Maurer-

Cartan form ΩA transforms as δΩA = AdΛ−1(dAǫ), and the variation of the action (2.19)

consequently yields

δSparticle =

∫

X(γ)
〈u, δΩA〉

=

∫

X(γ)
〈J, dAǫ〉

= −
1

2

∫

γ

〈∇J, σab〉 ǫab, (4.1)

where ∇ ≡ dX∗A is the covariant derivative of the deSitter connection pulled back to the

worldline, and we have used the full deSitter invariance of the bilinear form in the last step.

Using the results on the flat space analysis and the spinless example, we know that

the deSitter element J is the sum of the momentum and spin of the particle:

J = s ⊕−l2p. (4.2)

We will need to compute the covariant derivative of this current. For clarity purposes,

we write the corresponding expression, and many of the following, in local, component

language:

∇J =

(

1

2

[

(Dτs)ab + 2 e[a
τ pb]

]

σab −
[

l2(Dτp)a + sabeτb

]

Pa

)

dτ,
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where

Dτs
ab = ∂τsab + [Aτ , s]ab, and Dτpa = ∂τp

a + Aa
τ b pb.

We have introduced the notation X∗η := ητdτ , with ητ = ηµ∂τX
µ forall one-form η on M .

It is now immediate to obtain the first set of equations of motion of a massive spinning

particle coupled to gravity

δSparticle = 0 ⇔ 2 e[a
τ pb] + Dτs

ab = 0, (4.3)

known as the spin precession equation.

Note that this equation is simply the curved space generalisation of the flat space

conservation of total angular momentum obtained earlier, in the the zero cosmological

constant case.

Next, we consider variations of the embedding X of the worldline γ, that is, the

variation under an infinitesimal diffeomorphism bending the curve γ. As in the flat case,

it is convenient to define the conjugate variable ωA = AdΛ(ΩA). The variation of the

one-form ωX∗A under an infinitesimal variation of X yields

δωX∗A = δ(X∗A) = X∗LδXA,

with LδX = iδXd + diδX the Lie derivative along the vector field δX, with i here denoting

the interior product on Ω(M). Hence,

δSparticle =

∫

γ

〈J,X∗LδXA〉 (4.4)

=

∫

γ

〈J,X∗ [dA(iδX (A)) + iδX (FA)]〉

=

∫

γ

−〈∇J, iδX(A)〉 + 〈J,X∗iδX (FA)〉,

where we have used the equivalence between infinitesimal gauge transformations, with field

dependent parameter α = iδX(A), and infinitesimal diffeomorphisms up to the curvature

of the connection

LδXA = dAα + iδX(FA), (4.5)

in the third line. Using the equations on spin precession, the above equation of motion can

be reduced to the Mathison-Papapetrou equations [23] with torsion

Dτ pa eµ a +

(

1

2
sabFµν ab − paTµν a

)

∂τXν = 0, (4.6)

where T = dAe is the torsion two-form, and F ≡ FA is the curvature of the Lorentz

connection. See [23, 8, 22] for details.
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4.1.2 String

As for the particle, we start by studying variations of the action under infinitesimal varia-

tions of the group variable Λ. The variation of the action (2.26) yields

δSstring = 2

∫

X(Σ)
〈w,ΩA ∧ δΩA〉 (4.7)

= 2

∫

X(Σ)
〈K, ωA ∧ dAǫ〉

=

∫

X(Σ)
[d〈K, ωA ⊗ σab〉 + 〈K, ωA ∧ [A, σab]〉] ǫ

ab,

where ωA = dAΛΛ−1.

We define the following pair of one-forms on Σ

Sab = 〈K, ωX∗A ⊗ σab〉, and P a = −〈K, ωX∗A ⊗ Pa〉, (4.8)

respectively interpreted as the curved spacetime7 value of the spin and momentum of

the string. We will use the local expression of their covariant derivative in the Lorentz

connection A

DαS
ab
β = ∂αS

ab
β + [Aα,Sβ]ab, and DαP

a
β = ∂αP

a
β + Aa

α bP
b
β,

where we have introduced the notation X∗η = ηαdτα, with ηα = ηµ∂αXµ, forall one-form

η on M .

Now, extremising the variation derived above (4.7), we obtain a spin precession equa-

tion for the string. Written in local coordinates, the motion is the following

ǫαβ
[

2 e[a
α P

b]
β + DαS

ab
β

]

= 0. (4.9)

Finally, we study the motion obtained by varying the embedding of the string. Using the

identities derived for the particle, it is immediate to compute the variation of the pull-back

to the surface of the two-form ω∧2
A

,and the variation of the action follows

δSstring =

∫

Σ
〈K, δ(X∗(ωA ∧ ωA))〉 (4.10)

= 2

∫

Σ
〈K,X∗(ωA ∧ LδXA)〉

=

∫

Σ
[d〈K, ωX∗A ⊗ σAB〉 + 〈K,X∗(ωA ∧ [A, σAB ])〉] iδX (AAB)

+2

∫

Σ
〈K,X∗(ωA ∧ iδX(FA))〉,

7Note that, unlike the particle, the momentum and spin of the string depend on derivatives of the

variables X and Λ. Thus, through a minimal coupling procedure, these variables depend on the gravitational

field and their flat values are thus modified on curved backgrounds. The other way round, evaluated on the

flat solution, the curved momentum and spin P and S yield their flat values P and S .
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where we have used the relation (4.5) between the Lie derivative and the spacetime curva-

ture, together with a partial integration in the last step.

Written locally, the motion associated to the above variation yields

0 =

∫

Σ
d2τǫαβδXµ

[

(

DαS
ab
β + 2 e[a

α P
b]
β

)

Aµ ab

−2DαP
a
β eµ a +

1

l2
S

ab
α (eµ a eν b − eµ b eν a) ∂βXν

+

(

S
ab
α

(

Fµν ab −
1

l2
(eµ aeν b − eµ beν a)

)

− 2P a
αTµν a

)

∂βXν

]

.

Using the spin precession equation, we are naturally led to a Mathison-Papapetrou equation

with torsion for the string

ǫαβ

[

DαP
a
β eµ a −

(

1

2
S

ab
α Fµν ab − P

a
αTµν a

)

∂βXν

]

= 0. (4.11)

Note that in the flat limit, this equations simply reduces to the conservation of the mo-

mentum density P.

4.2 Gravitational field equations

To finish the study of the classical aspects of the theories introduced in this paper, we now

calculate the gravitational motion defining the equations determining the gravitational field

created by point and string sources.

The variation of the gravitational sector yields

δSMM = 2α

∫

M

〈∗φ[FA] ∧ δφ[FA]〉 (4.12)

= 2α

∫

M

〈∗

(

FA −
Λ

3
e ∧ e

)

∧

(

dAδA −
2Λ

3
e ∧ δe

)

〉

= −
1

4πG

∫

M

〈∗(e ∧ dAe) ∧ δA〉 + 〈∗

(

FA −
Λ

3
e ∧ e

)

∧ e ∧ δe〉.

We have used an integration by parts together with the following expression for the covari-

ant derivative of the Lorentzian part of the deSitter curvature:

dA(FA −
Λ

3
e ∧ e) = dAFA −

Λ

3
(dAe ∧ e − e ∧ dAe) =

2Λ

3
e ∧ dAe.

Next, we introduce the matter sources described by the particle and string action.

We start by considering the back-reaction of a particle on the gravitational field which is

described by the McDowell-Mansouri action (2.9) augmented with the particle term (2.19).

It is more convenient to work with the action written in terms of the dual variable ωA, the

variation of which we now compute.

δSparticle =

∫

X(γ)
〈J, δωA〉 (4.13)

=

∫

X(γ)
〈J, δA ⊕ δe〉

=

∫

X(γ)
−

1

2
tr s δA − η(p, δe).
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It is now immediate to write the corresponding back-reaction on the spacetime geometry

ǫµνρσǫabcd ec
ν T d

ρσ = −8πG

∫

γ

sab dXµ δ(x − X(τ)) (4.14)

ǫµνρσǫabcd eb
ν

(

F cd
ρσ −

2Λ

3
e[c
ρ ed]

σ

)

= −16πG

∫

γ

pa dXµ δ(x − X(τ)),

where each field on the left hand side is evaluated at the point x ∈ M . These equations,

if solvable, characterise the gravitational field produced by a particle of momentum p and

spin s. However, to our knowledge, there are no known solutions to these equations.

On the other hand, we can proceed in analogous way to calculate the effect of strings

on the spacetime geometry. Varying the string action (2.26), we obtain

δSstring = 2

∫

X(Σ)
〈K, ωA ∧ δωA〉 (4.15)

= 2

∫

X(Σ)
〈K, ωA ∧ (δA ⊕ δe)〉

= 2

∫

X(Σ)
−

1

2
tr S ∧ δA − η(P ∧ δe),

with the wedge product acting on the co-tangent bundle to the surface. Thus, we can

calculate the gravitational field produced by a string of momentum density P and spin S.

It is defined by the Einstein equations

ǫµνρσǫabcd ec
ν T d

ρσ = −16πG

∫

Σ
Sab ∧ dXµ δ(x − X(τ)) (4.16)

ǫµνρσǫabcd eb
ν

(

F cd
ρσ −

2Λ

3
e[c
ρ ed]

σ

)

= −32πG

∫

Σ
P a ∧ dXµ δ(x − X(τ)).

Unlike the point particle, it is possible to find explicit solutions to the above equations, at

least in the zero cosmological constant limit and for some specific values of the deSitter

element w. These solutions are called cosmic strings.

A cosmic string is the lift to 3 + 1 dimensions of the point particle solution in 2 + 1

gravity. It corresponds to a spacetime around an infinitely thin and long straight string

(see for instance [24] and references therein). In an earlier paper [6], we showed that in

the spinless and zero cosmological constant case, an action leading to the motion solved

by the cosmic string could be written. This action is precisely of the form of the spinless

action (3.29) derived as a particular case of the general framework developed here, but in

the BF gravity context (see next section). We will not reiterate the analysis and refer the

interested reader to reference [6] where the statement is shown in detail. What is new is

the link with the Nambu-Goto string. There is a free parameter, the mass per unit length

µ of the string, entering the equations describing the gravitational field around a cosmic

string. To obtain a match with the equations obtained above, the classifier element w must

be tuned appropriately. It is interesting to remark that the cosmic string solution tunes

w to be proportional to µP3 ∧P0, which is precisely the value describing the Nambu-Goto

string, if we identify the mass per unit length with the tension of the string. This shows a
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link between the Nambu-Goto string and cosmic string solutions of general relativity. One

would need to see if these results extend to the spinning, non-zero cosmological constant

case. We leave these investigations for further work.

To conclude the core of the paper, we explain how to relate the framework developed

here to pioneering approaches describing the coupling of strings to BF-like theories. This

leads us to discuss the perspectives offered by such a formalism.

5. Strings in BF-type theories — Perspectives

Gauge defects along two-surfaces were firstly considered [4, 5] in the context of BF theory,

a topological field theory of Schwartz type. The idea was to exploit the two-form nature of

one of the fundamental fields of the theory to introduce matter excitations along surfaces.

Allthough interesting, the obtained models clearly lacked a physical interpretation; the

matter sources were string-like but did not seem to be related to any known formulation

of string theory. An important conceptual progress was achieved in [6], but the link with

string theory structures was still not understood. One of the original motivations for this

work was to explore if such a correlation existed.

So, what does the framework presented in this paper teach us about string-like sources

coupled to BF theory as described in [4 – 7]? Well, retrospectively, it now appears clearly

that such surface defects are related to the Nambu-Goto string once that some constraints

are implemented in BF theory. These constraints introduce local degrees of freedom in the

theory and transform BF theory into general relativity.

BF theory is a topological field theory of Schwartz type whose fundamental fields in

four dimensions are a two-form B valued in the Lie algebra g of a chosen semi-simple Lie

group G and a G-connection A. In the vanishing cosmological constant case, the action is

SBF[B,A] =
1

κ

∫

M

B ∧ FA, (5.1)

where the algebra indices are paired with an Ad-invariant bilinear form on g, and κ ∈

R is a coupling constant. Extended matter can be naturally coupled to BF theory by

considering gauge defects along surfaces of the form
∫

Σ tr vB, where v is a fixed vector in

g, before performing an inverse gauge transformation on the B field. This leads to the

action considered in [5 – 7]. Now the resulting theory can not be interpreted as a string

theory because of its topological character. But there is a way of introducing local degrees

of freedom in BF theory. Then, BF theory becomes gravity and the string source becomes

the Nambu-Goto string. Let us discuss this point in further details.

By comparing the Einstein-Cartan action (2.10) with vanishing cosmological constant

to the above BF action with structure group G = SO(η) and bilinear form −1
2 tr, it is

easy to see that the two actions simply match provided the κ = 8πG and the following

identification holds

B = ∗e ∧ e.

The remarkable fact, discovered by Plebanski [15], is that this constraint can be imposed

in the BF theory action. Let us simply pinpoint the result (see for instance [25] for details).
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The idea is to add to the BF action a quadratic term C[Ψ, B] in the B field with internal

indices contracted with a Lagrange multiplier zero-form Ψ satisfying appropriate symmetry

requirements.8 Varying the Lagrange multiplier Ψ in the action

SPlebanski[B,A,Ψ] =
1

8πG
SBF + C[Ψ, B], (5.2)

forces B to be simple, i.e., in one of the four sectors

B = ±e ∧ e (I±), or B = ± ∗ e ∧ e (II±).

The first set of B field configurations corresponds to a topological sector, while the second

set indeed describes gravity. So, first order general relativity corresponds to one of the

sectors of the theory derived from the action (5.2).

Now, using the methods presented in section 3.2.2, one can show that an action of the

form

S[B;X,Λ] = −
k

4πα′

∫

X(Σ)
tr AdΛ(w)B,

with w = σ30, and k = ±1 (resp. k = ±σ2) when the B field is in the I± sector (resp. in

the II± sector), reproduces the Nambu-Goto action when varying Λ and reintroducing the

solution of the motion back in the action. Hence, plugging any sector of B field solutions

to the Plebanski constraints in the above action provides a first order formulation of the

Nambu-Goto string.

Accordingly, the action obtained by adding the above source term to the Plebanski

action

S[B,A,Ψ;X,Λ] = −
1

16πG

∫

M

tr B ∧ FA + C[Ψ, B] (5.3)

−
k

4πα′

∫

X(Σ)
tr AdΛ(w)B,

with appropriate choice of the constant k, describes the Nambu-Goto string coupled either

to 4D gravity, or to a topological theory. To suppress the topological sector, one should

extend the framework to introduce an Immirzi parameter in the theory. We postpone this

generalisation to future work.

Now the key point is that this BF formulation of strings coupled to 4D gravity appears

to be promising from the spinfoam quantum gravity perspective.

Spinfoam models [26] define a regularisation of the path integral of gravity based on

the convergence of different fields of research, such as topological field theory, simplicial

quantum gravity, lattice gauge theory and loop quantum gravity. Now, all known spinfoam

models of quantum gravity are based on the Plebanski formulation of GR as a constrained

topological theory. Hence, the framework presented here provides a spinfoam-compatible

formulation of (spinless) strings, in the sense that it only involves structures that are explic-

itly exportable to the spinfoam framework. Furthermore, in spinfoam models, spacetime

8Explicitly, the constraint term is of the form C[Ψ, B] = −
1
4

R

M
ΨabcdBab

∧ Bcd, with Ψ taking value in

the symmetric part of so(η) ⊗ so(η), i.e., Ψ[abcd] = 0.
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curvature is concentrated along two-surfaces, which implies that strings provide the most

natural candidates for curvature defects. We are currently investigating the construction

of such models [27].

6. Conclusion

In this paper, we have studied the inclusion of point and string matter in four-dimensional

general relativity recasted as a deSitter gauge theory. We proceeded by introducing local

symmetry breaking terms in the action supported by worldlines and worldsheets. Restora-

tion of full gauge invariance has led to the introduction of new dynamical fields interpreted

as describing matter degrees of freedom. The diffeomorphism symmetry led us to the

notion of position or embedding, while the local Lorentz symmetry gave rise to variables

encoding momentum and spin. This physical interpretation was established by relating our

formalism to the description of particle and string theories in terms of Poincaré group co-

ordinates, or pseudo-classical variables à la Balachandran and collaborators. We have then

studied the variational problem of the coupled system. We have calculated the deformation

of the momentum and total angular momentum conservation laws due to curved spacetime

effects. This has led us to Mathisson-Papapetrou and spin precession equations both for

particles and strings. We have then derived the equations describing the gravitational field

produced by such matter sources. For the non-spinning string case, we have discussed

some solutions related to cosmic strings. Finally, we have explained why this formulation

of (spinless) strings was promising from the spinfoam quantum gravity perspective.

We believe that the framework presented here provides potentially interesting outcomes

in various directions of research, the investigations of which are currently under study.
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